

Hydrometallurgy in raw materials utilization - an educational and communication programme (HydroMetEC)

Lifelong learning program (2020-2022)

EIT RawMaterials is supported by the EIT, a body of the European Union Supported by:

Towards Net Zero, from oil to renewable energy, from oil to minerals usage

Source: IEA

Conventional car EV Mineral usage (KG/Vehicle)
Supported by:
Connecting matters
Connecting matters

Mankind has so far mined 700,000,000 tonnes of copper of which 80% is still in use

RavvMaterials

"If 2008 was a financial crisis, this is a molecule crisis

We're out of everything, I don't care if it's oil, gas, coal, copper, aluminium, you name it we're out of it."

Jeff Currie, Global Head of Commodities Research Goldman Sachs February 2022

Cathode:

Al - current collector (5%) Co, Ni, Li, Mn - active materials (32%) Binders

Anode:

Cu - current collector (8%) Graphite (14%) Separator i.e Porous membranes (3%) polymers Electrolyte salts: LiPF₆, LiBF₄...(14%) Organic solvents: ethylene/dimethyl/diethyl carbonate Casings: Fe / other metals (polymers) (18%) (Contamination of other battery types)

Battery content source modified from F. Larouche et al. Materials 13(3), 801

Photo: Valeria Azovskaya

Upcoming EU battery regulation

- Transparent information about the recycled content required
- 2030: Minimum required recycled contents in battery: 4% Li, 4% Ni, 12% Co
- 2035: Minimum required recycled contents in battery: 10% Li, 12% Ni, 20% Co
- Element specific recuirements for recycled amount of Li, Cu, Ni, Co

Supported by:

More mining and refining needed! Recycling development needed!

- Recycling can fullfill <10% of raw material needs for batteries 2030
- 2040 already almost 50% of battery materials can be achieved by recycling
- 2050 ~80% of battery nickel and cobalt can be achieved by recycling

Hydrometallurgy

One of the three metallurgical technologies (Pyro-, Hydro- and Electrometallurgy)

3 types of unit operations

Hydrometallurgy

Advantages

- High selectivity over certain minerals or metals
- Suitable for low grade or complex ores, solid waste
- Flexibility and high modularity
- Efficient for removal of the harmful species and recovery of valuable metals
- Lower energy consumption in many cases and thus a low CO₂ emissions
- Lower capital and operational costs compared to pyrometallurgical processes

Limitations

- Lower productivity, and complex flowsheet
- Generation of large amount of effluent and solid residues
- Sometimes higher energy consumption in particular for sulphide concentrates

Applications of hydrometallurgy

Primary metals extraction and refining – mature technologies

- Zinc production (80%): roasting leaching electrowinning (RLE)
- Copper extraction (20%): leaching solvent extraction electrowinning (SX-EW process)
- Aluminium: alumina refining from bauxite (100%) Bayer process
- Nickel & nickel cobalt separation
- Gold production cyanidation process: leaching electrowinning
- **REE** extraction: leaching of REE minerals for RE oxide production (in combination with pyro- and electrometallurgy)
- **Uranium**: Na₂CO₃ based leaching process for U extraction.

Metals Recycling - emerging

- Industrial residues, EoL products and various types of scrap
- Already used for refining after pyrometallurgical processing

Introductory course

Fundamental knowledge about

applications

hydrometallurgical processes and

typical unit operations and industrial

Organisation of the events in the project

A

Advanced course

Important and advanced processes for the industrial applications

International seminar

Challenging issues in hydrometallurgical processing, sustainability, value chain in metals production and supply

Introductory course 2020	Advanced course 2020	International seminar
Norway - Online	Sweden - Online	2020, Sweden - Online
	Metso:Ou	utotec A
Introductory course 2021	Advanced course 2021	International seminar
Netherland - Online fune	Finland - hybrid	2021, Finland - hybrid
Introductory course 2022	Advanced course 2022	International seminar
Finland - hybrid	Greece - hybrid 🕲	2022, Greece - hybrid
EIT RawMaterials is supported by the EIT, a body of the European Union		Supported by: (Eit) RawMaterials

HydroMetEC

Life Long Learning Course: *HydroMetEC* - *Hydrometallurgy in raw materials utilization* - an educational and communication programme

N Paro

Part II: Advanced Course and Seminar

Hosted by National Technical University of Athens, Mytilineos and Monolithos in Athens, Greece

Join us for a 2-day hybrid advanced course in hydrometallurgy, from **21-22 November**, given by recognized academia and industrial experts. The course will include lectures on topics such as:

- \checkmark Mass and energy balance in hydrometallurgy
- \checkmark Kinetics and thermodynamics in hydrometallurgy
- ✓ Applications

A visit to Monolothios PGM recycling and catalyst production facilities. This will include lectures, tour and laboratory demonstrations

This will be followed by a 2-day hybrid seminar from **23-24 November** featuring:

1-day plant visit to Mytilineos Alumina production plant outside Athens. This will include a comprehensive plant tour and lectures on the Bayer process (only physical attendees).

1-day seminar featuring talks and workshop on critical raw materials (CRMs).

Register at: <u>https://ntnu.eventsair.com/hydrometec-2022/advanced</u> Deadline for registration: 11 November 2022 For more information: <u>https://www.ntnu.edu/metpro/hydrometec</u>

Registration fees: Advanced course ($\in 60$) and Seminar ($\in 60$).

Who should attend?

Participants from industry (engineers, scientists, researchers, technologists) and academia (postgraduate students and postdoctoral researchers) are welcome. A background in bachelor level chemistry/ materials science/geology or attendance to the Introduction to Hydrometallurgy course is required.

Image: State of the state

Hybrid 21-22 Nov 2022

08:45-09:00	Opening Remarks	
	Day 1: Monday 21-11-2022	Lecturer
09:00-09:45	Advances in Understanding of the Hydrometallurgical Unit Operations in Non-Ferrous Extractive	Srećko Stopic – Invited Speaker
	Metallurgy	(RWTH Aachen)
10:00-10:45	Sustainable agitator and reactor design for demanding applications in hydrometallurgy	Tuomas Hirsi (Metso Outotec)
11:00-11.30	Coffee Break	
11:30-12:15	Thermodynamics in hydrometallurgy	Mari Lundstrom (Aalto)
12:30-13:15	Hydrometallurgical circuits	Yongxiang Yang (TU Delft)
13:15-14:15	Lunch	
14:15-15:00	Alkaline electrolysis in iron ores	Panias Dimitrios (NTUA)
15:15-16:00	Kinetics in hydrometallurgical processes I	Jafar Safarian (NTNU)
16:15-16:45	Coffee Break	
16:45-17:30	Kinetics in hydrometallurgical processes II	Jafar Safarian (NTNU)
	Day 2: Tuesday 22-11-2022	
	Thematic Session: Greek Metals Recycling – Industrial Cases	
09:00-09:45	Secondary Lead Production from Spent Lead Acid Batteries	Athanasios Karakatsanis
		(Sunlight Recycling S.A.)
10:00-10:45	Challenges in Copper Recycling in the Semi-Fabricators' Industry	Nikolaos Marinakis
		(Halcor)
11:00-11:45	The TETALEAD process	Lena Sundqvist (LTU)
11:45-13:00	Lunch	
13:00-14:00	Transportation from NTUA	MONOLITHOS
14:00-14:45	MONOLITHOS hydrometallurgical process presentation	MONOLITHOS
14:45-15:30	MONOLITHOS catalyst synthetic protocol for substituting CRMs	MONOLITHOS
15:30-16:30	Lab tour demonstrating the aforementioned procedures	MONOLITHOS
16:30-17:30	Cocktails for participants	MONOLITHOS

Schedule: International seminar

Hybrid 23-24 Nov 2022

	ay 1:	Wednesday	23-11-2022	(Host:	Mytilinaios S.A.)	
--	-------	-----------	------------	--------	---------------------------	--

07:00-09.45	Transportation from Athens to Seminar Venue (near the Mytilinaios industrial facilities)	
	Thematic Session: Primary Aluminium Production	Lecturer
10:00-10:15	Opening Remarks	
10:15-11:00	Bauxite Mining	Mytilinaios S.A. Executive Personnel
11:15-12.00	Alumina Refining from Bauxite (The Bayer Process)	
12:15-12:45	Coffee Break	
12:45-13:30	Electrolytic Reduction of Alumina	Mutilinging S. A. Evenutive Demonral
13:45-14:30	Bauxite Residue Handling and Reuse Potential (The Greek BR case)	Mythinaios S.A. Executive Personner
14:30-15:30	Lunch Break	
15:30-16:30	Field trip to Mytilineos S.A. plant	Efthymios Balomenos
16:30-19:15	Transportation from Mytilinaios S.A. plant to Athens	
	Day 2: Thursday 24-11-2022	
	Thematic Session: CRM extraction technologies by hydrometallurgical routes	
09:00-09:45	Lithium Ion Batteries (LIBs) recycling	Prof. Anthimos Xenidis,
09:45-10:15	Discussion	NTUA
10:15-11:00	Invited Speaker 2: Title Pending	Dr. Olga Chernoburova,
11:00-11:30	Discussion	University of Lorraine
11:30-12:00	Coffee Break	
12:00-12:45	Alternatives to Bauxite for Alumina Production – Dream or Potential?	Michail Vafeias,
12:45-13:15	Discussion	NTUA
13:15-14:30	Lunch Break	
14:30-15.15	Bauxite Residue as a potential Sc and REE source – Pilot Scale Research Highlights	Efthymios Balomenos,
15:15-15:45	Discussion	Mytilinaios S.A.
15:45-16.30	Acid leaching for high purity Si production from the innovative SisAl process	Mengyi Zhu
16:30-17:15	Discussion	NTNU

EIT RawMaterials is supported by the EIT, a body of the European Union

Hybrid (Physical and Online) (Central European Time)

Tuesday 03-05-2022	Module 1: Fundamentals of hydrometallurgy	Lecturer
08:45-09:00	Welcome address by host	Mari Lundström/Aalto
09:00-09:45	Hydrometallurgy and its applications in metals production: an overview	Yongxiang Yang/TU Delft
09:45-10:30	Metal resources for hydrometallurgical extraction and recycling	Mari Lundström/Aalto
10:30-10:45	Coffee Break	
10:45-11:30	Leaching (atmospheric-, pressure-, bio-, organic lixiviants)	Mari Lundström/Aalto
11:30-12:00	Exercise 1 (Leaching)	Sipi Seisko/Aalto
12:00-13:15	Lunch Break	
13:15-14:00	Separation and solution purification -1: precipitation method	Lena Sundqvist/LTU
14:00-14:45	Separation and solution purification -2: solvent extraction and ion exchange	Lena Sundqvist/LTU
14:45-15:00	Coffee Break	
15:00-15:30	Exercise 2 (Separation)	Lena Sundqvist/LTU
Wednesday 04-05-2022	Module 1: Fundamentals of hydrometallurgy	Lecturer
09:00-09:45	Metals recovery: cementation and hydrogen reduction	Yongxiang Yang/TU Delft
09:45-10:30	Metals recovery and refining: electrowinning and electro-refining	Jari Aromaa/Aalto
10:30-10:45	Coffee Break	
10:45-11:15	Exercise 3 (electrowinning and electro-refining)	Jari Aromaa/Aalto
11:15-12:00	Solid - Aqueous interface properties in	Efthymios
	hydrometallurgy	Balomenos/MYTILINEOS
12:00-13:15	Lunch Break	
	Module 2: Battery metals production	Lecturer
13:15-14:00	Application of hydrometallurgy in primary production of battery metals (Outotec Lithium Process)	Marika Tiihonen/Metso Outotec Finland Oy
14:00-14:45	Application of hydrometallurgy in primary production of battery metals (nickel and cobalt)	Zac Komur/Northvolt AB
14:45-15:00	Coffee Break	
15:00-15:45	Application of hydrometallurgy in recycling of battery metals	Madeleine Scheidema/ Metso Outotec Finland Oy
15:45-16:30	Environmental impacts of hydrometallurgical battery recycling processes	Marja Rinne/Aalto

Tuesday Module 3: Application and practice Lecturer 10-05-2022 Application of hydrometallurgy in production of Yongxiang Yang/TU Delft 08:30-09:15 copper 09:30-10:15 Application of hydrometallurgy in alumina Efthymios production: Bayer process Balomenos/MYTILINEOS Application of hydrometallurgy in production of 10:30-11:15 Dennis Kemperman/Nyrstar Budel zinc Electrorefining of copper at Boliden Harjavalta Topias Härmä/Boliden 11:30-12:15 Harjavalta Lunch Break 12:15-13:30 Application of hydrometallurgy in production of Rauno Luoma/Nornickel 13:30-14:15 nickel Harjavalta 14:30-15:15 Basics of electrodeposition - redox replacement Kirsi Yliniemi/Aalto 15:30-16:15 Application of hydrometallurgy in production of Dimitris Panias/NTUA REEs Wednesday Module 3: Application and practice Lecturer 11-05-2022 08:30-09:15 Application of hydrometallurgy in the recycling of Anastasia-Maria PGMs Moschovi/Monolithos 09:30-10:15 Electrochemical recycling of REEs from NdFeB Prakash Venkatesan/ULB magnet wastes Application of hydrometallurgy in production of 10:30-11:15 James Mwase /NTNU titanium dioxide (synthetic rutile) Module 4: Laboratory demonstrations

Concluding remarks

- Hydrometallurgy is a flexible and efficient technology, already used in many non-ferrous metals production and refining.
- It is being used more and more for treatment of low grade and complex ores, and secondary raw materials.
- Hydrometallurgy can be effectively used for rare and scarce metal recovery from concentrated or dilute waste streams from waste materials in recycling industry.
- Hydrometallurgy dominates the world zinc production, and will be playing more important role in metals production from both primary and secondary resources.
- Sometimes, a combined route of pyro- and hydrometallurgical processing is more efficient and the best option!
- Hydrometallurgy is a fascinating world of process metallurgy!

